Statistical Modeling and Optimization Approaches for Development of Fuel-Efficient Vehicles

$$y(\vec{x}) = \sum_{i=1}^{N} C_i \cdot e^{-\frac{1}{2} \sum_{l=1}^{D} \frac{(X_{il} - x_l)^2}{r_l^2}}$$

Sameera C Damle

Manager - Technical Sales, Support & marketing E-mail: sameera.damle@etas.com

- About ETAS
- Challenges of today's ECU Calibration & Engine Development
- Model based Calibration
- Case Study

- About ETAS
- Challenges of today's ECU Calibration & Engine Development
- Model based Calibration
- Case Study

Corporate Profile

A Global and Growing Company

Leading Provider of Solutions and Services for Embedded Systems

- ETAS with over 850 associates is part of the Bosch Group
- Present in 13 countries with 23 offices
- ETAS subsidiary ESCRYPT is a specialist for embedded systems security

Numbers apply for ETAS and ESCRYPT

ETAS Customers and Domains

Trusted by OEMs, tier one and ECU suppliers, as well as engineering service providers:

Commercial Vehicles

Automotive Heavy Duty Engines

Railway Powertrain

Construction Machines

Consumer Electronics

Off-Highway

ESCRYPT Customers and Domains

The ESCRYPT customer base includes:

Automotive

Mobile Machines & Transportation

Energy

Consumer Electronics Mobile Devices

Industrial Automation

Financial & Government Logistics

Health Care

Corporate Profile

Our Solutions Portfolio

Software Engineering

Test and Validation Measurement, Embedded Calibration, **Diagnostics**

Security

Real Time Applications

ETAS Products

Consulting and Engineering Services

Virtualization Technology

- About ETAS
- Challenges of today's ECU Calibration & Engine Development
- Model based Calibration
- Case Study

Challenges of today's ECU Calibration & Engine Development

Stringent Regulations

Challenges of today's ECU Calibration & Engine Development

Complex Systems

<u>Classical calibration procedure:</u> Full factorial variation of all combinations

⇒ Exponential increase with variable valve timing (VVT)

Challenges of today's ECU Calibration & Engine Development

Conflicting targets

- Speed
- Load

Engine Parameter:

- Injection Timing
- Ignition Timing
- Fuel Pressure
- Exhaust Gas Recirculation
- Exhaust Camshaft
- Intake Camshaft
- Swirl Valve

Targets:

- Consumption/CO₂
- · Emissions:
 - Soot / Particle
 - NO_x
 - HC
- Stability (CoV)
- Noise
- Exhaust-Temperature
- ..

Classical Procedure:

⇒ Full variation of all input parameters result in exponential increase of measurement effort!

Virtual Calibration with ASCMO:

- □ Creation of an engine model based on few specific measurements
- ightharpoons Optimization of the calibration parameter based on the model (manual or with optimizers)

- About ETAS
- Challenges of today's ECU Calibration & Engine Development
- Model based Calibration
- Case Study

Main elements and requirements

Test planning

- Robust
- Scalable
- Easy to use

Modeling

- Highest possible accuracy
- Automated model calculation
 - No specific mathematical expertise necessary

Map optimization

- Global: for whole driving cycles
- Considering map-smoothness and gradients

Principle and advantages of Statistical machine learning methods

Polynomials or Neuronal Nets

Principle:

- Search in a given class of functions (polynomial, neuronal net, ...)
- Fit the model parameter by experts and validation measurements

<u>Disadvantages:</u>

- Limited flexibility & danger of over-fitting
- High expertise and assumptions necessary

Modeling a complex 1-D signal with classical DoE-Models ("Advanced Polynomials")

Statistical machine learning methods

Principle:

Search in a complete function space:

$$y(\vec{x}) = \sum_{i=1}^{N} C_i \cdot e^{-\frac{1}{2} \sum_{l=1}^{D} \frac{(X_{il} - x_l)^2}{r_l^2}}$$

Automatic determination of the most likely function

Advantages

- High flexibility without assumptions or expertise
- Gives local confidence interval (model variance)
- Robust against outliers

Modeling a complex 1-D signal with new statistical machine learning methods

Data from Gasoline Engine

Benchmark:

Comparison of two different neuronal nets from commercial tools against ASCMO

Example:

Torque-modelling for a gasoline engine with variable in- & outlet-cam in the whole operating range (speed/load)

6 Parameter:

speed, load, 2 cams, AFR and ignition

Shown:

Evolution of model-error depending on number of training data:

Neural Net: black + red

1400 ASCMO-approach: blue

⇒ Neural Net: insufficient accuracy even with > 1000 training data points ⇒ ASCMO: sufficient accuracy reached with 300 training data points

- About ETAS
- Challenges of today's ECU Calibration & Engine Development
- Model based Calibration
- Case Study

Case Study

Challenges I/II

Parameters:

Engine speed Injection quantity Start of injection Charge pressure Air mass Rail pressure Swirl flap Variable valve drive Low pressure EGR Exhaust gas damper Quantity and position:

- Pre-injections
- Post-injections

Target variables:

Fuel consumption Exhaust gas emissions Response behaviour Noise emissions Power characteristics

Optimization of multiple criteria trade-off

Source: Volkswagen

Case Study

Challenges II/II

Broad operating region:

Vehicle types: Compact car to SUV

Variants: Eco / Comfort / Sport

Transmission: Manual/Automatic

Engine/gearbox

combination

Case Study

Results

Validation measurement: EGR-Variation

Model data set:

- 12 parameters
- Operating area: NEDC
- 600 measurement points
- Accuracy: model of fuel consumption <= 1%

Evaluation of the model quality:

- Gaussian model: Highest quality
- Manifold opportunities to plausible the model

Results:

- By using the global engine model with ASCMO the fuel consumption could be reduced by 2 – 4 %
- Reduce particulate emission of a diesel engine by adding a post injection to an existing calibration concept without increasing of fuel consumption.
- Classical approach would require at least 8
 weeks for the necessary 10 parameter
 but with the use of ASCMO global model
 with 400 data points could be
 optimised in 1.5 days.
- With ETAS ASCMO, application engineers are able to use **DoE independently**
- Since the launch of ETAS ASCMO, the number of **DoE users has been** increasing rapidly

Source: Volkswagen

Statistical Modeling and Optimization Approaches for Development of Fuel-Efficient Vehicles

Thank you

Muchas gracias

谢谢

Tack så mycket

Děkuji

धन्यवाद

Mille Grazie

Merci

ขอบคณ

Hvala

sağ olun

감사합니다.

有難うございました

Спасибо!

Kiitos

Д'якую

Vielen Dank